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Abstract. Cross sections of high energy semielastic γ∗p → f2p leptoproduction of f2(1270) or η(548)
mesons as well as the γp → f2 + M2

D photoproduction at large t are estimated in the framework of
perturbative QCD using the hypothesis of parton-hadron duality.

1 Introduction

Due to a more complicated colour structure of the SU(3)c

group QCD predicts the existence of a high energy ampli-
tude with all vacuum quantum numbers in the t-channel
except of the C-parity. The amplitude with C = −1 and
intercept αodd close to 1 was called “odderon” [1]. In the
Born approximation the amplitude is given by the three
gluon exchange, where any pair of gluons forms the sym-
metric colour octet 8s. This contribution is pure real and
proportional to c.m. energy square, T odd ∝ s. In other
words it corresponds to αodd = 1 and does not vanish for
high energy. The leading logarithmic corrections to the
Born amplitude were discussed in [2–4]. Unfortunately,
there are still no final results. Only the limits [5]

αodd − 1 <
3
2
(αPom − 1)

are known (here αPom = 1 · 12αs

π ln 2 is the intercept of
the BFKL pomeron [6] leading logarithmic amplitude).

The odderon exchange should reveal itself in the real
part of the nucleon-nucleon amplitude. However the sim-
plest estimate [7] shows that due to the additional power
of the QCD coupling αs and some numerical factors, at
least in the Born approximation, an odderon contributes
at most 0.02 to the value of the ratio Re/Im for the pp--
forward amplitude. Thus it is hard to search for the odd-
eron in pp- (or pp̄)-elastic scattering.

It was argued in [8] that the measurement of exclu-
sive electroproduction of mesons with positive C-parity
(C = +1) at HERA might test the presence of the QCD
odderon. The cross section of ηc photo- and electropro-
duction was calculated in [9].

In the present paper we will discuss the production of
f2 and η(548) mesons (which contain only light quarks).
As the wave function of the f2(1270) meson is not known
well enough the hypothesis of parton-hadron duality will
be used. Strictly speaking, we will calculate the cross sec-
tion of light quark qq̄-pair exclusive electroproduction, se-
lecting the state with fixed mass Mqq̄ = Mf2 ± ∆M and
the JPC = 2++ (IG = 0+) quantum numbers. After the

hadronization such a state will form mainly the f2-meson;
there is not enough phase space to produce (with large
probability) a more complicated multiparticle state with
such a low mass and JP = 2+. In any case our result
may be considered as upper limit for the cross section of
γ∗ + p → f2 + p.

Both electroproduction by longitudinally and trans-
versely polarized photons will be discussed. As it is known
for the γ∗ → ρ production the transverse cross section
is suppressed by the factor M2/Q2 in comparison with
the longitudinal one. In contrast we will show that the
γ∗ → f2 production amplitude falls down faster with Q2

for the longitudinal photon and σL/σT ∝ M2/Q2 for
γ → f2.

In Sect. 3 we will discuss the large t “inelastic” pro-
cess with the dissociation of the target proton into some
diffracted state M2

D. As in this case there is no proton
form-factor the γ → f2 photoproduction cross section
decreases slowly with t (dσ/dt ∼ 1/t3). Taking into ac-
count the possibility of a large O(αs) corrections (due
to the O(CF

αs

π π2) K-factor and the leading (αs ln 1/x)n

terms, which correspond to the positive odderon intercept
1 ) one may hope to expect relatively large cross section
σ(γp → f2 + M2

D) ' 0.5 nb (for |t| > 10 GeV2) which can
be observed at HERA.

2 Born amplitude

In the Born approximation the quark-quark scattering via
the odderon exchange is given by the three gluon ampli-
tude (Fig. 1)

T (Q, s) =
10α3

s

92π
s

∫
d2q1d

2q2d
2q3δ

(2)(q − q1 − q2 − q3)
q2
1 q2

2 q2
3

,

(1)
where qi is the momentum transferred along the gluon
i = 1, 2, 3 (at high energy s � q2

i the 4-momentum square
q2
i ' q2

it — the transverse component square) and q is the

1 We hope that ∆odd > 0
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Fig.1

Fig. 1. Born diagram for the odderon exchange in the quark-
quark scattering

a

qi
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Fig. 2. Coupling of the odderon (3 gluons) to the nucleon (3
quarks) wave function

momentum transferred along the odderon as a whole. The
numerical factor 10/92π takes into account the symmetry
of the gluons (1/3!), the sum over the gluon’s colour in-
dices (

∑
ijk |dikj |2 = 40/3), the averaging over the colours

of the incoming quarks (1/9) and the factor 1/2π due to
the Feynman loop integration.

The odderon coupling to the proton vertex may by
written in the form [7,9]:

F (qi) = 3

{
G(q2) −

3∑
i=1

G(q2 − 3qiq + 3q2
i )

+2G

(
3∑

i=1

3q2
i

2
− q2

2

)}
. (2)

Here the first term corresponds to the graphs, where all
three gluons couple to the same quark line (Fig. 2a). The
second term reflects the contribution from diagrams where
only two gluons are connected to the same quark (see
Fig. 2b), wheres the last term stems from diagrams of the
type shown in Fig. 2c, where any gluon couples to another
valence quark.

Expression (2) is evident in the case of the non-relat-
ivistic quark wave function of a proton (with the oscil-
latoric potential and a Gaussian form-factor G(Q2) =
exp(R2Q2), Q2 < 0). Following [9] we will use expression
(2) also in the case of the dipole form-factor G(Q2) =
1/(1 + |Q2|/0.71 GeV2)2 in order to estimate how the re-
sult depends on the form of the nucleon wave function.

An important property of the vertex (2) is the fact that
due to the colourless nature of the nucleon the function
F (qi) vanishes for any momentum qi → 0. This property
provides the infrared convergence of the integrals dq2

i /q2
i

in the amplitude of the type of (1).
In principle we whould have to discuss the exact form

of the γ∗ → f2 vertex. However, as we don’t know the
wave function of f2-meson well we will use the hypothesis
of parton-hadron duality and consider the γ∗ → qq̄ process
as the basic production mechanism.

kt
′

qt

-kt +(1-z)qt

kt + zqt

γ
z

a

Qγ

qi

b

Fig. 3. Coupling of the odderon to the quark-antiquark (me-
son) state

2.1 Longitudinal γ∗ → qq̄(JP = 2+) amplitude

As in the case of ‘elastic’ ρ electroproduction [10] it is
convenient to use the formalism of [11,12] and to calculate
first the matrix element of the γ → qq̄ transition putting
both the quarks (with helicities λ and λ′ = ±1) on mass
shell. For the longitudinally polarized initial photon the
matrix element reads

Ψλ,λ′(k′
t, z) =

eq

√
z(1 − z)

Q̄2 + k′2
t

ūλγ · εvλ′

= 2Q
eqz(1 − z)
Q̄2 + k′2

t

δλ,−λ′ , (3)

where Q =
√−Q2

λ, Q̄2 = z(1 − z)Q2
γ , eq is the electric

charge of the light quark, ε is the photon polarization vec-
tor, k′

t and z are the transverse momentum and photon
momentum fraction carried by the quark (see Fig. 3). The
quark-gluon vertex conserves the helicity of high energy
quark and the momentum fraction z is not changed also.
Therefore only the transverse momentum of the quark k′

t

in (3) is different from the final quark momentum kt +zqt.
In order to simplify the projection onto the JP = 2+

state we use the momentum kt in the rest frame of the
qq̄-system (the z axis is directed along the target proton
momentum) and put the quark mass mq = 0. So the value
of kt = (M/2) sin θ (where M = Mqq̄ is the mass of the
qq̄-pair and θ is the quark polar angle).

In this notation the contribution from the Feynman
diagram of the type shown in Fig. 3a reads

2Qeqz(1 − z)δλ,−λ′
1

Q̄2 + (kt − (1 − z)qt)2
. (4)

Summing up all graphs with any permutations of the three
t-channel gluons leads to

SL =
1

Q̄2 + (kt − (1 − z)qt)2
− 1

Q̄2 + (kt + zqt)2

+
3∑

i=1

[
1

Q̄2 + (kt + zqt − qit)2

− 1
Q̄2 + (kt − (1 − z)qt + qit)2

]
. (5)

Here the second term corresponds to the same Fig. 3a
type diagram, but where all the three t-channel gluons
couple to the antiquark q̄ instead of the quark q, while the
other terms reflect the permutations of a single gluon (i =
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1, 2, 3). At large photon virtuality Q2 when |Q̄2| � |k′2
t |

the leading contributions (∼ 1/Q̄2) in (5) cancel and the
first non-zero contribution of the expansion 1/(Q̄2+k′2) '
1/Q̄2 − k′2/Q̄4 + k′4/Q̄6 is of the order 1/Q̄6. Indeed:

SL ' 1
Q̄4

{
(k + zq)2t −

∑
i

(k + zq − qi)2t

+
∑

i

(k + (z − 1)q + qi)2t − (k + (z − 1)q)2t

}

+
1

Q̄6

[
(k + zq)4t − (k + (z − 1)q)4t

+
∑

i

(k + (z − 1)q + qi)4t −
∑

i

(k + zq − qi)4t

]

=
1

Q̄6

[
((k + zq)qt)

(
4q2 − 4

∑
i

q2
i

)

+ 8
∑

i

((k + zq)qit)(q2
i − qtqi)

+ 2q4 +
∑

i

(
4q2

i (qqi) − 4(qiq)2 − 2q2
i q2)] , (6)

where the expression in the curly brackets gives zero after
taking into account the fact that

∑
i qi = q. Using the

identity

2
∑

i

(qqi)(q2
i − (qqi)) + q4 − q2

∑
i

q2
i = (7)

2
[
(qq1)(q2q3) + (qq2)(q1q3) + (qq3)(q1q2)

]
=: M(q, qi)q2

the vertex factor SL may be written as

SL ' 4
Q6

[
(kqt) +

(
1
2

+ z

)
q2
]

M(q, qi) . (8)

Now it is easy to see that the main logarithmic contribu-
tion to the odderon exchange amplitude

LT odd = (9)
10α3

s

92π
s

∫
d2q1d

2q2

q2
1q2

2q2
3

F (qi)2Qz(1 − z)SL(kt, z, Q̄, qi)

comes from the region of large qi � q, 1/R (but qi � Q̄).
Function F (qi) is defined in (2) and for qi � q, 1/R only
the first term in (2), F (qi) ' 3G(q2) corresponding to
Fig. 2a is essential. So for 1/R, q � qi � Q̄ the integral
(9) takes the form

I = 2
∫

d2q1d
2q2d

2q′
3δ

(2)(q − q1 − q2 − q′
3)

q2
1q2

2q′2
3

×
[
(qq1)(q2q

′
3) + (qq2)(q1q

′
3) + (qq′

3)(q1q2)
]

≈ 2q2
∫

d2q1d
2q2d

2q3δ
(2)(q1 + q2 + q3)

q2
1q2

2q2
3

×
[
(q2q3) − q2

2 +
2(q2q3)2

q2
3

]
+ O(q4) ,

where we put q′
3 = q + q3 and keep only terms of order

q2, averaging over the direction of the vector qt in the
azimuthal plane.

With the help of Feynman parameter x it is now easy
to get:

I = 2

1∫
0

dx d2q2d
2q3

[(1 − x)q2
2 + xq2

1 ]2
q2[...]

q2
3

=
∫

dx q2 d2(q2 + xq3)
[q2

2 + 2x(q2q3) + xq2
3 ]2

2
d2q3

q2
3

×
[
−q′2

2 + 2xq′
2q3 − x2q2

3 + q′
2q3 − xq2

3

+
2(q′

2q3)2

q2
3

+
2x2q4

3

q2
3

− 4(q′
2q3)xq2

3

q2
3

]

= 2π

∫
q2dx(x2 − x)
(x − x2)q2

3
d2q3

= −2π2q2 ln
Q̄2

q2
c

(here q′
2 = q2+xq3 and the lower limit qc ' max{q/3, 1/3R}).

Thus

LT odd ' 80πα3
s

27
s
(kqt) + (1/2 + z)q2

Q̄6 G(q2)

× ln
Q̄2

q2
c

· 2Qz(1 − z). (10)

To obtain the total cross section of γ∗ → qq̄ dissocia-
tion we have to integrate over the upper quark loop

dσL

dtdM2

=
∑
λ,λ′

4παe2
qNc

162π4s2

∫
dzd2ktδ

(
M2 − k2

t + m2
q

z(1 − z)

)

×|T odd|2δλ,−λ′ (11)

( α = 1/137 is the electromagnetic coupling, Nc = 3 and
we put the light quark mass mq = 0).

Now we perform the integration over kt using the δ-
function (k2

t = z(1− z)M2) and write the integral over dz
in terms of the polar angle: z = 1

2 (1+cos θ). The last step
is to separate the qq̄-state with definite JP = 2+

dσL

dtdM2 =
∑
λ,λ′

αe2
qNc

(16π)2
∑

J

|LCJ
m|2δλ,−λ′ (12)

with the projection

LCJ
m =

∫ 1

−1
dJ

mm′(θ)
LT odd

s

√
z(1 − z) d cos θ

√
2J + 1.

(13)

An extra factor
√

z(1 − z) was generated in (13) by the
δ[M2 − k2

t /(z(1 − z))] function after the dk2
t integration.
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The lower indices of the dJ
mm′-function reflect the projec-

tion of the total spin J onto the initial photon axis (m)
and onto the quark axis (m′ = (λ − λ′)/2 = ±1 due to
helicity conservation of the γ → qq̄-vertex). At zero angle
(corresponding to qt = 0) the projection m = 0 for σL and
m = 1 for σT . However, for non-zero qt, the term (ktq) in
(10) corresponds to m = 1 (for σL) due to the orbital mo-
mentum of the qq̄-pair motion (the factor kt reflects the
p-wave nature of the amplitude). Thus both configuration
with m = 1 and m = 0 are produced by the longitudinal
photon via the odderon exchange.

The integration over dz = 1
2d cos θ in (13) has the log-

arithmic form dz/z(1 − z). Indeed, in the denominator of
the amplitude (10) we have Q̄6 = Q6z3(1−z)3 and one ad-
ditional factor sin θ = 2

√
z(1 − z) comes either from the

quark momentum kt = (M/2) sin θ or from the function
d2
01(θ) =

√
3/2 sin θ cos θ . Therefore in the leading loga-

rithmic approximation (LLA) the coefficients CJ
m take the

form:

LC2
0 =

q2

Q5 G(q2)
80π

√
15

27
√

2
α3

s 4 ln2 Q2

4q2
c

(14)

LC2
1 =

M |q|
Q5 G(q2)

40π
√

5 α3
s

27
4 ln2 Q2

4q2
c

. (15)

The main contribution to the value of CJ
m comes from

the logarithmically large interval of z where Q̄2 = z(1 −
z)Q2 = sin2 θ (Q2/4) varies from q2

i ∼ (qt/3)2 up to Q̄2 =
Q2/4.

The q2 = t behaviour of the Born cross section dσ2/dt
is evident from (12,14,15). For the numerical estimates
we use M = Mf2 = 1270 MeV, αs = 0.4, R2 = 2.75
GeV−2. The projection onto the isospin IG = 0+ state
gives

∑
q=u,d e2

q ⊗ 0+ = 1/9. Note that in accordence with
the parton-hadron duality the cross section (12)–(15) was
integrated over the interval ∆M2 = 1 GeV2.

Of course the cross section vanishes at t = 0. It has a
maximum at |t| ' 0.3 GeV2. But even after the t−integra-
tion its value (' 1.5 pb at Q2 = 10 GeV2) is probably too
small to be observed at HERA.

2.2 Transverse γ∗ → qq̄ (JP = 2+) amplitude

For the transversely polarized photon the matrix element
of the γ → qq̄ transition takes the form [11,12]

Ψλ,λ′(k′
t, z) =

eq

√
z(1 − z)

Q̄2 + k′2
t

ūλγε±vλ′

=
eqδλ,−λ′

Q̄2 + k′2
t

(ε±k′
t)[(1 − 2z)λ ∓ 1], (16)

where ε± = 1√
2
(0, 0, 1,±i) is the photon polarization vec-

tor. After the summation over the permutations of the
three t-channel gluons we obtain (in analogy with (5)):

ST =
(ε(k + zq − q)t)

Q̄2 + (k + zq − q)2t
− (ε(k + zq))

Q̄2 + (k + zq)2t
(17)

+
3∑

i=1

[
(ε(k + zq − qi)t)

Q̄2 + (k + zq − qi)2t
− (ε(k + zq − q + qi)t)

Q̄2 + (k + zq − q + qi)2t

]

≈ 1
Q̄4

[
2
∑

i

(εqi)
(
q2
i − (qqi)

)
+ (εq)

(
q2 −

∑
i

q2
i

)]
.

As in the previous case (Sect. 2.1) the leading log contri-
bution comes from the region of qi � q, and finally

T T odd =
s

Q̄4 (εqt)G(q2)
40α3

s

27
πΦ(z) ln

Q̄2

q2
c

, (18)

where the function Φ(z) = 1 − z for λ = 1 or Φ(z) = z for
λ = −1 (for the case of ε = ε−). Only the state with the
projection m = 0 is produced by the transverse photon at
large Q2 and

T CJ
0 =

1∫
−1

dJ
0λ(θ) T T odd

√
2J + 1

√
z(1 − z)d cos θ

' qt

Q4 G(q2)

√
15
2

80π

27
α3

s ln2 Q2

4q2
c

. (19)

The total cross section σT ' 1.7 pb at Q2 = 10 GeV2 is
close to the longitudinal one σL. However at larger Q2

the longitudinal component σL ∝ 1/Q10 falls down faster
than σT ∝ 1/Q8.

The straightforward numerical computations show that
the accuracy of the leading logarithmic expressions for
the integral I (see (9,10) ) is better than 20%. Unfortu-
nately another terms of the nucleon-odderon vertex F (qi)
(see (2)) are important at not very high values of Q2 ∼
10 − 100 GeV2. The whole amplitude LT odd becomes
smaller at |t| < 0.2 GeV2 then changes the sign and has
a maximum (of its absolute value) at |t| ∼ 1 GeV2 (at
|t| ∼ 0.7 GeV2 for T T odd). The height of the maximum
is typically close (±20%) to the value of maximum of the
LLA expressions (14, 15).

More serious problem is the contribution coming from
the infrared region of qit < 200 − 300 MeV. In spite of the
fact that all the integrals are convergent and all the singu-
larities are integrable this contribution in not negligible. In
all the computations the infrared 1/q2

i singular behaviour
of the gluon propagators was softened by adding the small
mass (mg = 200 MeV), i.e. we put 1/(q2

i − m2
g) instead

of 1/q2
i in the denominator of (9). If, for example, one re-

places mg = 200 MeV by mg = 300 MeV the cross section
decreases by about factor of two. Without any infrared
cutoff (mg = 0) the cross section increases about 4 times
in comparison with the case of mg = 200 MeV (αs = 0.4
is still fixed). However it is hard to believe that the per-
turbative QCD is valid in such a “soft” region. therefore
we consider the result with mg = 1/1Fm = 200 MeV as a
more realistic one. Of course the predictions are uncertain
by a factor of 2 - 4.

In order to see the role of the target proton wave
function we compare the exponential parametrization of
the proton form-factor (G(q2) = exp(R2q2), R2 = 2.75
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GeV−2 in agreement with the electromagnetic proton ra-
dius) and the dipole parametrization G(q2) = 1/(1 +
|q2|/(0.71 GeV2))2. Within the 10-20% accuracy the re-
sults are close to each other and reveal the same qualita-
tive features.

2.3 η-production

To estimate the cross section of η(548)-meson electro-
production one has to convolute the amplitude with the
d0
00 ≡ 1 function. This gives the contribution only in the

case of transversely polarized photon where for the mas-
sive quarks the matrix element has the component mλδλλ′ .

ūλ(γT ε±)vλ′ (20)

=
1√

z(1 − z)

{
δλ,−λ′(ε±k′

t)[(1 − 2z)λ ∓ 1] + λmδλλ′

}
.

As now for any λ = λ′ = ±1 the projection onto the
quark axis m′ = (λ − λ′)/2 is equal to zero we have to
sum up over the λ just at the amplitude level 2. So the
η-production is induced mainly by the strange (‘heavy’)
quark and

dσ2

dtdM2 =
αe2

sNc

(16π)2
|〈 ss̄ | η 〉|2|C0

00|2 . (21)

With: e2
s = 1/9 and 〈ss̄ | η〉 = −2/

√
6 in the case of

unbroken flavour SU(3)F (or 〈ss̄ | η〉 ' −1/
√

3 if one
takes into account the realistic mixing angles) one gets

C0
00 = mq2

∫ 1

0
dz

80πα3
s

27
G(q2)

× ln
Q̄2

q2
0

2
√

z(1 − z) (z + 1/2)
Q6z3(1 − z)3 + O(q2 + m2)

. (22)

The factor 2 comes from the sum over λ = ±1; the fact
that the element λmδλλ′ changes the sign together with
λ reflects the pseudoscalar nature of the η-meson; η =
1/

√
2(q↑q̄↓ − q↓q̄↑).

Unfortunately, the integral (22) is not infrared stable.
The main contribution comes from the region of Q̄2 =
Q2z(1 − z) ∼ q2 (i.e. z(1 − z) ∼ q2/Q2), where (if the
momentum transfer q2 is not too large) the perturbative
QCD approach is not justified. Therefore we can present
only a very crude estimate 3

C0
00 ∼ 4

3
mq2

Q3 G(q2) 4
80πα3

s

27
1

(q2 + m2)1.5 (23)

leading to ση ∝ 1/Q6 ( ση ∼ 0.6 pb for Q2 = 10 GeV2).

2 In Sect. 2 where λ = ±1 corresponds to the different values
of m′ = ±1 there was no interference and it was sufficient to
sum over λ at the level of the cross section (12)

3 Note also that for such a small Q̄2 ∼ q2
i ∼ q2 strictly

speaking we cannot use the expansion (6) over 1/Q̄2 and one
has to integrate the function SL (5) explicitely

3 Large t photoproduction

As we have already seen the main contribution to the cross
section comes from not too small q2 = t (|t| ∼ 1GeV2).
Thus let us consider another possibility to study the odd-
eron exchange, namely, the measurement of the f2-meson
photoproduction at rather large momentum transfer −t ≡
q2. Here, Q2

γ = 0 and the large scale (needed to justify the
perturbative QCD approach) is controlled by the value of
|t|.

To avoid the suppression coming from the target pro-
ton form-factor one may consider the “inelastic” process
with the dissociation (γ∗ + p → f2 + M2

D) of the proton
into a ‘small’ mass system M2

D ∼ |t|.
The cross section is given by the same formulae (12),

(16) as in Sect. 2. However now (at Q2 = 0) one cannot
use the decomposition over the small parameter q2

i /Q̄2 and
instead of (17) we have to integrate the expression for ST

explicitely. In the limit Q → 0 and k ≤ M/2 � q =
√|t|

the amplitude

T T odd ' 10α3
s

92π
s

∫
d2q1d

2q2

q2
1q2

2q2
3

F (x′) St (24)

with

St ' 2Φ(z)
{

εq(z − 1)
(1 − z)2q2 − εqz

z2q2

+
3∑

i=1

[
ε(zq − qi)t

(zq − qi)2
− ε((z − 1)q + qi)t

((z − 1)q + qi)2

]}
(25)

Let us for a moment put i = 1. Then the integral over dq2
may be done with the help of the Feynman parameter x∫

d2q2

(µ2 + q2
2)((q − q1 − q2)2 + µ2)

=

1∫
0

dx

[q2
2(1 − x) + (q′ − q2)2x + µ2]2

=

1∫
0

dx

µ2 + q′2x(1 − x)
(26)

=
π√

q′2(4µ2 + q′2)
ln

∣∣∣∣∣2µ2 + q′2 +
√

q′2(4µ2 + q′2)
2µ2 + q′2 −√q′2(4µ2 + q′2)

∣∣∣∣∣ ,
where q3 = q − q1 − q2, q′ = q − q1 and a small infrared
cutoff µ2 was included. Due to the fact that St → 0 for
any momenta qi → 0 the final expression is infrared stable
(i.e. tends to the finite limit at µ → 0).

In (24) the function F (x′) is the probability amplitude
to find an appropriate target quark. In the LLA4

F 2(x′) =
∑

f=u,d,s

(f(x′, q2) + f̄(x′, q2))dx′ . (27)

4 Note that in LLA the odderon does not couple to the gluon-
parton
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In order to estimate the scale of the cross section (inte-
grated over the region where M2

D is not too large ) we will
put

∫
F 2(x′)dx′ = 3 below, which means that only the

valence quarks are taken into account.
With a reasonable (∼ 10%) accuracy the results of the

numerical integration (over d2q1 and dz) may be approx-
imated by the simple formula

C ' 22(1 − 3.3µ/q)4 (28)

and the cross section of f2 photoproduction5 is then given
by

dσ

dt dM2 ' α6
s

t3
2
αe2

qNc

(16π)2
3|C|2 (29)

' 4.4
|t|3

(
1 − 3.3

µ√|t|

)8 [
nb

GeV4

]

In the region of |t| > 10 GeV2 this corresponds to the
cross section σ(|t| > 10 GeV2) ' 15 pb for ∆M2 = 1
GeV2, µ = 200 MeV, and αs = 0.4. Note that without the
infrared cutoff (µ = 0) the cross section increases about 7
times reaching the value σ(µ=0)(|t| > 10 GeV2) ' 100 pb.
However one can not believe the perturbative QCD pre-
diction coming from the region of so small momenta. Thus
the first estimate (σ(|t| > 10 GeV2) ' 15 pb) looks more
realistic.

For η-meson photoproduction due to the factor m in
the matrix element (20) (instead of the momentun k′

t ∼ q
in the case of f2-meson) the cross section falls down faster
with |t| and the expected dση/dt dM2 ∝ m2/t4.

4 Conclusion

As it was shown in Sect. 2 the Born amplitudes for the
QCD odderon exchange is too small to lead to the observ-
able f2- (or η-) meson electroproduction cross sections at
HERA. At Q2 = 10 GeV2 the expected (γ∗p → f2p) and
(γ∗p → ηp) Born cross sections are about 1 pb.

The case of photoproduction at large t looks more
promissing. In Born approximation the cross section of
f2-production in the region of |t| > 10 GeV2 (Q2

γ = 0)
σ(γp → f2 + M2) ∼ 15 pb. Moreover, there is some hope
that higher order αs corrections will increase this value at
least by an order of magnitude. Indeed:

1. In analogy with the Drell–Yan process the so-called
K-factor, which comes mainly from the contribution
of the form CF

αs

π · π2 (in the photon-odderon vertex),
most probably enlarges the cross section of about two
or four times (see [10] for more detail).

2. The summation of the leading log 1/x corrections

∑
n

cn

(
αs ln

1
x

)n

5 To be more specific, — the photoproduction of a qq̄-pair in
the JP = 2+, IG = 0+ state

to the odderon exchange Born amplitude may shift
the position (intercept) of the odderon singularity to
the right in the complex momentum j-plane. The only
known result at the moment is the semi-classical esti-
mate of Korchemsky [13]. He gives ∆odd = αodd − 1 '
0.87∆P ' 0.2 − 0.3 (if one uses the latest F2 data to
estimate the value of ∆P ). Even for ∆odd = 0.2 this
factor 6

σ ∝ (1/x)2∆odd

=

(
W 2

m2
f2

+ |t|

)2∆odd

' 15

(for W = 100 GeV and t = −10 GeV2) increases the
cross section by more than a factor of 10. Therefore one
may hope that the realistic (including the higher order
αs corrections) estimate is σ(γp → f2 + M2

D) ' 0.5nb
(at |t| > 10 GeV2) and such a process may be studied
at the present HERA collider.
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